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Abstract: In this article we study the nonlinear dynamics of a quantum  mesoscopic circuit in the range where 

the initial condition 0 ,that  is,  the initial normalized magnetic flux of the system which oscillate in the interval 

[- 0 ,  + 0 ] is close to  . This circuit is modeled as a LC circuit with quantized electric charge excited  by 

energy battery that can produce an electrical  discreteness charge in LC quantum circuit  in the form of narrow 

pulses. 
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I. Introduction 
Let us first start by reviewing the essentials of quantum LC circuits with continuous charge, as 

discussed by Louisell [1]. Recall that a classical LC circuit is described by the Harmonic oscillator Hamiltonian: 
2 2Q

H
2L 2C


          (1) 

in which Q  represents the electric charge, and   the magnetic flux, its canonical conjugate variable; 

the equations of motion are the classical Hamiltonian equations. To quantize the system, the variables Q  and 

  are replaced by the operators Q  and  . Following [2, 3,4],  to recover the quantization of charge within 

this electrical circuit approach, we introduce the replacement  

 e

e

q2
sin( )

q 2
  




,        (2)  

where the canonical variables Q  and  , and the Hamiltonian H  become operators, Q Q , 

 , H H , and the Q and   operators satisfy the canonical commutation rules  Q, i  
 

 . In the 

classical case, the equations of motion are the Hamilton equations, dQ/ dt H  and Qd / dt H    ; 

while in the quantum case, the equations of motion are the Heisenberg equations,   dQ / dt Q,H  
 

 and 

  d / dt ,H    
 

 . The mathematical problem to be solved becomes that of finding the eigenvalues and 

eigenstates of the Hamiltonian operator, H  ; to do that, one usually adopts the so-called charge representation 

( Q -representation), in which Q Q  and  i d / dQ    , the Hamiltonian operator becomes 

 


  2

2

e

2

e

2 q Q
H sin( )

q L 2 2C


 




     (3) 

We treat our mesoscopic system as a quantum electrical circuit, with quantized charge.where eq  is the 

quantum of charge. We remark that, if charge discreteness is neglected, the operator   may be directly 

identified with the magnetic flux operator, and therefore directly related to the current; however, when one 

introduces charge discreteness via the replacement above, the simple relation to the current is lost, therefore, 

after replacement (2) the flux operator becomes the pseudo-flux. This pseudo-flux operator satisfies the usual 

commutation relation  Q, i  
 

 . Notice that, given the complexity of dealing with an operator such as the 
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one above (2), it is simpler to work in the so-called pseudo-flux representation, in which the operator  is 

replaced by its eigenvalue   , while the charge operator is given by Q i





 . In this way, the resulting 

Hamiltonian  is given by (3). 

The Hamiltonian operator above constitutes our starting point, and our working hypothesis. The 

parameters of our theory, particularly L and C, are related to the geometry of the system, but are hard to 

compute for a given experimental system, therefore, they should be deduced from experimental observations. In 

section 2 we give a background of a semiclassical  study of LC circuit. In section 3 we discuss solutions of the 

differential equation for the mesoscopic  circuit  in nonlinear regimen. Finally we give our conclusions. 

 

II. Semiclassical Study of LC Circuit 
The electrical engineer use simplified model  provided by thecircuit description of a system, when 

compared with the more complete, however, we describe the behaviour of electrons modern circuits using the  

basic laws (Kirchhoff) as in a classical circuit. Many examples  can be given:  flux quantization on 

superconductors, conductance oscillations, quantum hall effects (integer and fractional), persistent currents and 

so on. 

It would be very useful to find out to what extent a circuit-like description could be of use for the very 

small electronic circuits of mesoscopic devices, and what may be retained from it  [5-9 ],  for example, one area 

in which the ”quantum LC circuit” may give valid results is in the calculation of energy spectra since it still 

required to solve the Schrodinger equation. 

Now, we propose to go one step further in our simplification, by proposing to use a ”semiclassical” 

approach [2, 3,4] . We start from our Hamiltonian, for the LC circuit, with quantized electric charge 

 
2 2

e

2

e
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q L 2 2C


 




      (4) 

and the Heisenberg motion equations are 

H Q

Q C


  




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e

e
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This pair of equations may be written as a single second order equation  
2

2

02

d
sin 0

dt


          (6) 

where we define 0/    , with 0 e/ q   , ( and Q are c-numbers), 
2

0 1/ LC  . Equation (6) 

is the same expression than simple pendulum, a system that has been quantized  by several authors [5],  (see 

references therein). Discrete-charge quantum circuit have been studied other authors [10-13], to obtain 

approximate quantum energy  eigenstates for initial condition 
0 0sin   (radians). In this paper we will study 

the nonlinear dynamical behavior when 0   .  

At the initial instance, the energy of the mesoscopic circuit  is the sum of the kinetic and potential 

energy, from (4) we obtain : 

 
2

2
00 LC 0E E sin ( / 2)   



 or 

2
2

00 LCE / 2 / 2 (E / 2)sin ( / 2)   


     (7) 

 

with 
2

LC 0E 4 4 / LC    which has been normalized and 0/ ,     e 0/ q   . Because of the assumed  

lossless system , the initial energy is preserved for all instances: 

2 2

0 LCE (t) E sin ( (t) / 2)   


 

Here, 
2

p 0E / 2 2   is the maximum possible (normalized) potential energy of the quantum circuit, being 

attained when 0 


. Here, we are interested in the quantum circuit when 0 LCE E where 



Nonlinear Dynamics of a Quantum Mesoscopic Circuit 

DOI: 10.9790/1676-1104045258                                          www.iosrjournals.org                                    54 | Page 

2 2

0 LC 0 LC(t) E E sin ( (t) / 2) E E 0      


   (8) 

 

III. Solution of the Differential Equation of Motion for the Mesoscopic  Circuit  when 
0 LCE E  

Analytically to determine the dynamics of the mesoscopic circuit, we must  solve the equation  
2

2

02

d
sin 0

dt


    

This is similar to  the approach  proposed in the work of [14] for pendulum theory, but will impose an 

initial condition where 0


is  zero. That is to say, 

0(t 0)    ,  0

t 0

d
0

dt 


  



    (9) 

In this equation , 0   is the initial angular displacement of the system which oscillates  in the interval [- 0 ,  

+ 0 ] . Now we multiply equation  (6 ) by
d

dt


, we have 

Which is written as 

2 2

0

d 1 d
( ) cos 0

dt 2 dt

 
   

 
       (10) 

Equation (10) refers to the conservation of the total mechanical energy, to integrate and apply the initial 

conditions given by equation (9), we obtain 

 2 2

0 0

d
( ) 2 cos( (t)) cos( (t))

dt


          (11) 

The solution of this equation is given in appendix A 
1 1

0(t) 2sin ksn(F(sin (1),k) t,k          (12) 

(See appendix A),  therefore equation (12) reproduces the known formula for the nonlinear pendulum  [14]. 

1 1

0(t) 2sin ksn(F(sin (1),k) t,k    
 

    (13) 

However F( ,k) (k)
2


   is the first class elliptical integral [14],  so 

1

0(t) 2sin ksn( (k) t,k     
 

     (14) 

The period T is the time required to complete a cycle, in this case, the oscillation period T is four times 

the time taken from 0,( 0)    ,    
0 , ( 1)      (see appendix A) so  

0 / 4 (k)          (15) 

In Figure 1, the period T differs appreciably from 0T  only for large amplitudes. For small amplitudes it 

is sufficient to take the first corrective term, sufficient approximation for most practical situations as is done by 

other authors [12-14].  

 

 
Figure 1. Change in the frequency or  period of mesoscopic circuit according to the amplitude, equation (15). 
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As the initial angular displacement increases (and its initial angular velocity), the oscillation period 

0 0/ T / T  increases considerably. That is, the movement becomes disharmonious. Since the magnitude of 

sin  is always less than the angle  , the acceleration of real circuit will be noticeably lower than 
2

2

02

d
sin

dt


    (valid for small angles where sin    ), and corresponds to the simple angular harmonic 

motion. For this reason, once the movement becomes  anharmonic significantly, the period no longer remains 

constant but lengthens increasingly with increasing amplitude. 

Now to study the nonlinear behavior of the mesoscopic circuit we  suppose a normalized battery energy  
2 2

B real 0 0E E / 2C   which can be positive or negative that is connected  to LC circuit. We only consider the 

adiabatic approximation so that battery energy ( )BE t  is consider as a constant . Actually, the linear term given 

by the battery  can be moved by a translation in the ‘coordinate’ (charge) space and  we make a re-definition of 

Q  and Q and a shift of the energy 
0E . 

The condition energy conservation  is  

2 2

0 LC 0 LC(t) E E sin ( (t) / 2) E E 0      


 

Here, 
BE is included in

0E .  According equation (11)  

 2

0 0

d
( ) 2 cos( (t)) cos( (t))

dt


          (16) 

When (t) ,    0


=0,  the critical angular velocity is 

 c 0 0

d
( ) 2 1 cos

dt


          (17) 

where 

(t) (t T)    ,  ( ) ( )t t T  
 

, 04 ( ) /T k   . 

If the mesoscopic circuit has solely the initial condition 0  without any initial angular velocity 0


, 

0 0 


, then we have 1/ 2k  . For these special initial values and the initial instance 

0t t (k)    

(t) 2arcsin(ksn( t,k))         (18) 

0(t) E cn(ksn( t,k))  


 

 

which is the known solution in the literature [10] for nonlinear pendulum. . Numerical values are given 

for different values of BE but with 00     . 

For  amplitudes shown in Table 1,  the harmonic function provides an excellent approximation to the 

periodic solution of Eq. (18) and the periodic motion exhibited by a simple mesoscopic circuit is practically 

harmonic but its oscillations are not isochronous (the period is a function of the amplitude of oscillations). 

From table 1, we can conclude that for initial amplitudes as high as 0.75  the effect of the nonlinearity 

is seen only in the fact that the frequency of the oscillation 


  depends on the amplitude 0  of the motion. 

 

Table 1 

max  min  



 
0  

8

0t 10   BE  

0.3 -0.3 0 0.1  2,  4.8,  8,  11,  14 -0.4 

0.75 -0.75 0 0.25  2, 5,  8.2, 11.3,14.5 -0.25 

1.5 -1.5 0 0.5  2.1, 5.5 , 9,13 ,16.5 0 

2.5 -2.55 0 0.75  2.4, 7, 12,16.3,22.5 0.25 

3.0 -3.0 0 0.99  5. 5,  17 , ....... 0.5 
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Table 1, shows values of different parameters of the mesoscopic circuit for 0 


 at microwave 

frequency obtained from equation (18). 

As a comparison between Figures 2 and 3, Figure 1 shows a temporal variation of  practically 

harmonic while Figure 3 presents a large period with 


(dashed line) as a set of pulses corresponding to a 

discrete charge configuration. 

 

 

Figure 2 Shows an example for the solution of the amplitude   with 0 0.5    and 
BE 0  . 

 

As has been stated above, sn and cn are periodic functions having a real period equal to four times the 

complete elliptic integral of first kind. Therefore, the amplitude     is  also a  periodic function. 

Figure 3, shows  the amplitude   and the angular velocity


. They  are also periodic functions for 

0 0.995   , : 
BE 0.5 . Therefore, the amplitude   and the angular velocity are also periodic functions. 

However the dynamics of the circuit is is highly nonlinear. 

Here 


is proportional to the discreteness charge Q  of the quantum circuit 

0

Q Q

C C
   



 

 (19) 

 

 

Figure 3, the amplitude   and the angular velocity are also periodic functions for 0 0.995   , : BE 0.5 . 
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IV. Conclusion 

In this article we have studied  the nonlinear dynamics of a quantum  mesoscopic circuit in the range 

where the initial condition 0 that  is the initial normalizes magnetic flux of the system which oscillate in the 

interval [- 0 ,  + 0 ] is close to  . This circuit is modeled as a LC circuit with quantized electric charge 

excited  by energy battery that can produce an electrical  charge discreteness in LC quantum circuit  in the form 

of narrow pulses. 

In the event of small oscillations, the energy
0E   of the circuit is small compared  to the maximum 

possible potential energy
LCE . This leads to a modulus close to zero, for which the Jacobi elliptic functions can 

be replaced by trigonometric functions. 

The period of oscillation of the mesoscopic circuit is constant and  independent of the initial angular 

displacement for values of 
0 / 2  , as shown in Figure 1. As the initial angular displacement increases (and 

its initial angular velocity), the oscillation period increases considerably when 
0  . That is, the movement 

becomes disharmonious. For this reason, once the movement becomes dissonant or anharmonic significantly, 

the period no longer remains constant but lengthens increasingly with increasing amplitude. The results 

presented also intend to bring the student of physics and engineering , the introduction of elliptic integrals and 

motivate the search for new alternatives offered programming to solve physical and applied mathematical 

problems. 
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Appendix A 

Analytically to determine the dynamics of the mesoscopic circuit, we must  solve the equation  
2

2

02

d
sin 0

dt


          (A0) 

This is similar to  the approach  proposed in the work of [10] for  nonlinear pendulum theory, but will 

impose another  initial condition, that is the initial angular velocity 0


is  zero. That is to say, 

0(t 0)    ,  0

t 0

d
0

dt 


  



     (A1) 

In this equation , 0

0

(t 0) 
 


  is the initial angular displacement of the system which oscillate in the interval 

[- 0 ,  + 0 ] and 0


 is the initial angular velocity. Now we multiply equation  (A0) by
d

dt


 

2
2

02

d d d
sin

dt dt dt

  
    

Which is written as 

2 2

0

d 1 d
( ) cos 0

dt 2 dt

 
   

 
       (A2) 



Nonlinear Dynamics of a Quantum Mesoscopic Circuit 

DOI: 10.9790/1676-1104045258                                          www.iosrjournals.org                                    58 | Page 

Equation (A2) refers to the conservation of the total mechanical energy, to integrate and apply the initial 

conditions given by equation (A1), we obtain 

 2 2

0 0

d
( ) 2 cos( (t)) cos( (t))

dt


         (A3) 

Given the trigonometric identity 

2cos 1 2sin ( )
2


    

 in equation (1) and considering the following changes of variables: 

2 0sin ( ) k
2


 ,      sin( ) (t)

2


       (A4) 

Equation (A3) in terms of the new variables is given by 

2 2 2

0

d
( ) 4 k

dt


            (A5) 

where the initial conditions given by equation (A1), satisfy 

(t 0) k   ,    and  
d d d 1 d

cos( )
dt d dt 2 2 dt

    
 


   (A6) 

It should be noted that θ varies between 0 and π, therefore, it is determined 𝑘 in 0 <k <1. From equations (A5) 

and (A6) follows 
2

2 2 2

0

d
( ) k 1 (1 )

dt k

 
            (A7) 

effecting a change of dimensionless variables, defined by: 

0t  ,    
k


         (A8) 

Equation (A5) in terms of the new variables  is: 

2 2 2d
( ) 1 k (1 )
d


     

      (A9) 

where ( 0) 1    ,          (A10) 

From equation (15) we have 

2 2

d
d

1 k (1 )


  

    

      (A11) 

integrating  both sides of equation (A11) we get easily 

1

2 2 2 2
0 o

1 d d

k 1/ k (1 ) 1/ k (1 )

 
      

           

   (A12) 

Incomplete elliptic integrals of first class are defined as (Abramowitz and Stegun, 1972): each  of the integral 

equation  (A12) are expressed in the form, 
z

1

2 2
o

1 d
sn ( ,k)

k 1/ k (1 )


 

   
     (A13) 

1

1

2 2
o

1 d
F(sin (1),k)

k 1/ k (1 )




   
    (A14) 

Then equation (A12) is expressed as: 
1 1( ) sn ( ,k) F(sin (1),k)          (A15) 

Finally  we can  obtain the angular displacement, in equation (A15 ) as 
1 1

0(t) 2sin ksn(F(sin (1),k) t,k         (A16) 

 


